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In this supplementary material, we present additional information of E2GAN.

1 Network Implementation Details

Policy network and Q Network For E2GAN, there are two networks: the pol-
icy network and the Q-network. Since we proposed to formulate the architecture
design as an MDP and ensured a stable state representation, the agent can now
make the decision on the next cell architecture based solely on the input state s.
It is important to note that this alleviated the need of using an RNN to model the
architecture states (as previously proposed in the AutoGAN’s framework [2]).
In this research, we adopt a fully-connected MLP with two hidden layers of 128
units as our policy network to provide action distributions. We utilize the same
invertible squashing function technique as proposed in [4] to the output layer of
the policy network. Similarly, for the Q-network, we use a fully-connected MLP
with two hidden layers of 128 units, predicting the Q-value. ReLU activation
function is used in all the hidden layers. The other hyper-parameters could be
found in Table 1. The choices of SAC hyperparameters have been well studied
in [3], we use the default values from the paper.

Hyperparameters Value

Minibatch size Full memory
Actor learning rate 3e-4
Critic learning rate 3e-4
Target smoothing coefficient(τ) 0.005
Discount(γ) 1
α 0.1
Optimizer Adam [5]

Table 1. SAC Hyperparameters

∗ Equal contribution.
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Discriminator Network We follow AutoGAN and only search for the genera-
tor. We use the same discriminator setup which adopts the multi-level architec-
ture search (MLAS), where the corresponding discriminator grows progressively.
This discriminator was manually designed by the authors, and adopted many
techniques discovered by SOTA GANs to stabilize the training, such as spectral
norm [6], Hinge Loss [7], and residual components [1]. Please find the details in
Figure 1 and also in the AutoGAN paper.

Fig. 1. The discriminator architecture used by both AutoGAN and E2GAN.

2 Training Details

GAN training For GAN training, we follow the same training strategy and
hyper-parameters as AutoGAN [2], which follows the training setting of spectral
normalization GAN [6]. The learning rate of both generator and discriminator
is set to 2 × 10−4, using the hinge loss, Adam optimizers [5], 1:5 as genera-
tor/discriminator training ratio. The spectral normalization is only enforced on
the discriminator. Searching and training are conducted on a RTX2080TI GPU.

RL training As mentioned in the main paper, the entire RL training process
contains two periods: the exploration period and the exploitation period. During
the exploration period, the agent will explore and learn the possible architec-
tures. While in the exploitation period, the agent will always choose the best
architecture, in order to quickly stabilize the policy.
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Architecture Number Cell 1 Cell 2 Cell 3

Seed 1 - Top 1 [0, 1, 0, 1] [0, 1, 2, 1, 0] [0, 1, 0, 1, 2]

Seed 2 - Top 1 [0, 1, 0, 0] [0, 1, 2, 0, 0] [0, 1, 0, 0, 2]

Seed 3 - Top 1 [0, 1, 2, 0] [0, 1, 2, 0, 1] [0, 1, 0, 0, 3]

Table 2. Discovered architectures by E2GAN in 3 different seeds from scratch.

The exploration period is set to be 70% of iterations, and the rest as ex-
ploitation iterations. This ratios is chosen to ensure a balanced trade-off be-
tween sufficient exploration and successful convergence. As a guideline, most
of the iterations should be used for exploration, but sufficient iterations should
also be kept for the second phase, such that the algorithm can output stable
architectures in the end.

3 Visualization of Discovered Architectures

3.1 Multiple random seeds

We train our agent from scratch with three different seeds, our agent steadily
converged the policy in the exploitation period and discovered similar architec-
tures. The discovered architectures are listed in Table 2 , and visualized in Fig
2,3,4.

Fig. 2. The generator architecture discovered by E2GAN on CIFAR-10 in Seed 1.

Fig. 3. The generator architecture discovered by E2GAN on CIFAR-10 in Seed 2.
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Fig. 4. The generator architecture discovered by E2GAN on CIFAR-10 in Seed 3.

4 Ablation Study

4.1 MDP vs Non-MDP

In previous methods such as AutoGAN, the GAN architecture of an earlier
layer is decided greedily without considering future layers. However, a better
architecture may have a lower reward for the first layer but a higher final reward

Fig. 5. Training curves on architecture searching. (Left) Performance of the first cell.
(Right) Performance of the final output of the last cell. Although Non-MDP setting
found better shallow architecture due to it greedy strategy, the MDP setting shows
better final results for the entire architecture in terms of both IS and FID. The X-axis
indicates the time steps, while the Y-axis is the performance on the proxy task.
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Fig. 6. Training curves on architecture searching. Off-Policy setting shows better re-
sults on both IS and FID. The X-axis indicates the total time steps,while the Y-axis
is the performance on the proxy task.

for the entire architecture. By formulating NAS as a MDP process, we search for
the architecture with the highest cumulative reward, which considers all layers
and in theory allows us to target this ‘more global’ optima. This property is also
supported empirically by an additional ablation study. Even though the non-
MDP formulation found a first layer with 5% higher IS score, the final score of
it in the last layer is 32 % lower than our proposed MDP formulation.

4.2 On-policy vs Off-policy

Our MDP framework works for both on/off-policy RL algorithms, the reason we
choose SAC is that its effectiveness and good data efficiency have been widely
acknowledged in many tasks [3].

To find out the difference between the on/off-policy, we reset the memory
buffer size after every update to approximate an on-policy SAC. With all the
other settings the same, both the IS and FID of off-policy RL results are better
than on-policy RL.

Fig. 7. Performance curves of E2GAN and AutoGAN. The X-axis indicates the train-
ing epochs, while the Y-axis is the min/max/average performance. The evaluation
frequency is 20 epochs.
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5 Evaluation of the Discovered GAN

The evaluation protocol provided by AutoGAN uses the best model found in a
20 epoch interval. Due to the unstable nature of GAN training, this protocol
may be insufficient to compare different methods. We thus additionally compare
the GAN performance curve against training epochs for our best architecture
and AutoGAN’s best architecture. We run the training of both models for three
times and report the average/min/max performance. Our model shows highly
competitive performance.
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